Regeneration in the era of functional genomics and gene network analysis.
نویسندگان
چکیده
What gives an organism the ability to regrow tissues and to recover function where another organism fails is the central problem of regenerative biology. The challenge is to describe the mechanisms of regeneration at the molecular level, delivering detailed insights into the many components that are cross-regulated. In other words, a broad, yet deep dissection of the system-wide network of molecular interactions is needed. Functional genomics has been used to elucidate gene regulatory networks (GRNs) in developing tissues, which, like regeneration, are complex systems. Therefore, we reason that the GRN approach, aided by next generation technologies, can also be applied to study the molecular mechanisms underlying the complex functions of regeneration. We ask what characteristics a model system must have to support a GRN analysis. Our discussion focuses on regeneration in the central nervous system, where loss of function has particularly devastating consequences for an organism. We examine a cohort of cells conserved across all vertebrates, the reticulospinal (RS) neurons, which lend themselves well to experimental manipulations. In the lamprey, a jawless vertebrate, there are giant RS neurons whose large size and ability to regenerate make them particularly suited for a GRN analysis. Adding to their value, a distinct subset of lamprey RS neurons reproducibly fail to regenerate, presenting an opportunity for side-by-side comparison of gene networks that promote or inhibit regeneration. Thus, determining the GRN for regeneration in RS neurons will provide a mechanistic understanding of the fundamental cues that lead to success or failure to regenerate.
منابع مشابه
Bioinformatics Study and Investigation of the Expression Pattern of Several Important Genes Involved in Glycyrrhizin Synthesis of Glycyrrhiza glabra L. in Autumn and Spring Seasons
Glycyrrhiza is one of the important medicinal plants that is in danger of extinction. Search for finding accessions that have a higher glycyrrhizic acid is very important in breeding programs. Functional genomics methods such as EST sequencing prepare the ability to identify consensus gene families among studied species and interpretation of the genome. In this research, 55960 EST sequences of ...
متن کاملMapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...
متن کاملUrban neighborhood regeneration; Interpretive structural modeling of the factors affecting connected public spaces
Urban planning has emphasized quicker, lighter, and cheaper methods in recent years. According to urban studies, urban public spaces are valuable factors for urban neighborhood regeneration. Although, the concept of the network (connectivity in public spaces) is not new, and various authors and researchers had applied and adapted it to different areas of urban planning, it would be a new approa...
متن کاملIdentification of key genes and pathways involved in vitiligo vulgaris by gene network analysis
Background and Aim: Vitiligo vulgaris is an acquired, chronic skin and hair condition characterized clinically by loss of melanin, which, if untreated, is typically progressive and irreversible. The aim of the present study was to identify potential genes involved in the pathogenesis of vitiligo. Methods: One dataset of mRNA expression in patients with vitiligo (GSE65127) were obtained from ...
متن کاملResistance Gene Analog Polymorphism (RGAP) Markers Co-Localize with the Major QTL of Fusarium Head Blight (FHB) Resistance, Qfhs.ndsu-3BS in Wheat
Resistance gene analog polymorphism (RGAP) markers linked to Fusarium head blight resistance (FHB) and co-localize with Qfhs.ndsu-3BS were identified using F3 plants and F3:5 lines derived from a ‘Wangshuibai’ (resistant) / ‘Seri82’ (susceptible) cross. The mapping populations were genotyped using 50 degenerate primers designed based on the known R genes. Out of the 50 designed primer combinati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biological bulletin
دوره 221 1 شماره
صفحات -
تاریخ انتشار 2011